For each algorithm, the area under the receiver operating characteristic curve is computed, averaged across all subjects and gestures. In addition, training time and number of features are presented.



Total number of algorithms evaluated: 64

ICA Filter Window length (s) PCA Penalty Train time (s) No. feats AUROC
False bandpass 0.5 False l2 8.048 291 0.798
False bandpass 0.25 False l2 18.447 291 0.788
False bandpass 0.5 False l1 16.852 275.625 0.783
False filter bank 1 False l2 7.422 1443 0.783
False filter bank 0.5 False l2 24.936 1443 0.782
False filter bank 0.25 False l2 54.911 1443 0.779
False bandpass 1 False l2 3.621 291 0.778
False bandpass 0.25 False l1 35.112 279.819 0.778
False filter bank 1 True l2 0.465 398.583 0.776
False filter bank 1 False l1 48.758 1063.75 0.774
False filter bank 0.5 False l1 96.66 1264.1 0.774
False filter bank 0.25 True l2 3.298 396.833 0.772
True bandpass 0.5 False l2 7.716 291 0.772
False filter bank 0.25 False l1 201.602 1011.96 0.772
False filter bank 0.5 True l2 1.165 315.917 0.77
False filter bank 1 True l1 9.621 264.208 0.769
False bandpass 0.5 True l2 0.592 80.917 0.769
False filter bank 0.25 True l1 44.339 337.139 0.766
True bandpass 0.25 False l2 17.19 291 0.766
False filter bank 0.5 True l1 15.392 252.944 0.765
False bandpass 0.5 True l1 4.333 76.389 0.764
False bandpass 1 False l1 8.453 274.319 0.762
True bandpass 0.5 False l1 16.723 279.042 0.758
True bandpass 1 False l2 2.793 291 0.758
False bandpass 0.25 True l2 0.944 87.167 0.755
True filter bank 0.5 False l2 22.737 1443 0.755
True bandpass 0.5 True l2 0.688 95.25 0.755
True bandpass 0.25 False l1 34.79 270.986 0.755
True filter bank 0.25 False l2 60.028 1443 0.753
False bandpass 0.25 True l1 7.45 84.736 0.752
True filter bank 1 False l2 7.336 1443 0.751
True bandpass 0.5 True l1 4.852 87.278 0.749
False bandpass 1 True l2 0.256 76.917 0.748
True filter bank 0.5 False l1 96.982 1121.1 0.746
True bandpass 1 False l1 9.098 273.958 0.746
True filter bank 0.25 False l1 197.119 995.139 0.745
True filter bank 1 True l2 0.41 417.417 0.744
True bandpass 0.25 True l2 1.307 99.333 0.744
True filter bank 0.25 True l2 2.642 414.5 0.744
True filter bank 1 False l1 51.189 1190.67 0.743
True filter bank 0.5 True l2 1.058 326.583 0.743
True bandpass 1 True l2 0.26 92.583 0.742
False bandpass 1 True l1 1.95 72.181 0.742
True bandpass 0.25 True l1 8.721 93.153 0.741
True filter bank 0.5 True l1 17.675 253.5 0.736
True filter bank 0.25 True l1 44.99 341.972 0.736
True bandpass 1 True l1 2.727 76.944 0.734
True filter bank 1 True l1 10.811 255.583 0.733
False filter bank 2 False l2 3.889 1443 0.719
False filter bank 2 True l2 0.258 344.333 0.717
False filter bank 2 False l1 27.897 1173.81 0.716
False filter bank 2 True l1 4.864 236.389 0.706
True filter bank 2 False l2 3.422 1443 0.701
True filter bank 2 True l2 0.245 362.083 0.697
True filter bank 2 False l1 26.249 1099.14 0.69
True filter bank 2 True l1 5.192 237.736 0.685
False bandpass 2 False l2 1.199 291 0.684
True bandpass 2 False l2 1.402 291 0.679
False bandpass 2 True l2 0.139 66 0.673
False bandpass 2 True l1 0.879 49.167 0.669
True bandpass 2 True l2 0.175 80.917 0.668
True bandpass 2 True l1 1.034 53.014 0.644
False bandpass 2 False l1 3.578 146.181 0.611
True bandpass 2 False l1 2.948 118.875 0.6

Total run time: ~ 1 day with i5-8250U processor, 4x1.60GHz Cores, 16 GB RAM

Below shows the ROC curve for the best algorithm for subjects 1 and 2. subj1_roc subj2_roc

Artifact removal

Using ICA for artifact removal lowers the AUROC across all algorithms. For these results, only eyeblink artifacts were removed to prevent artifact misidentification and loss of useful information. One possible explanation is that the activity in the independent source containing blink artifacts contains useful, event-discriminant information.

Signal filtering

Filtering the signals into the seperate brain rhythms improves performance for the longer windows of 1 and 2 seconds, but not for the windows of 0.25 and 0.5 seconds. One potential explanation for this is that the quality of the PSD estimate improves with longer windows, resulting in more useful features.

Window length

Window lengths of 0.25, 0.5 and 1 second all perform well. A window length of 2 seconds results in a significant drop in performance, with all the algorithms using a window length of 2 at the bottom of the table. A logical explanation for this is that data from 2 seconds before a GAL event contains no/little useful information.

Dimensionality reduction with PCA

Algorithms using PCA see a decrease in AUROC, perhaps expected given the inherent loss of information. However, the reduction in number of features and in turn training time is significant. It can be seen PCA reduces dimensionality more than L1 regularisation.

Regularisation

Algorithms using L2 regularisation perform better than their L1 counterpart. L1 regularisation prioritises a sparse solution, completely zeroing out coefficients. In contrast, L2 regularisation will shrink the coefficients of less useful features, but the features are still used, perhaps resulting in a slightly better AUROC.